

POTENZIAL- UND WÄRMEMENGENERMITTLUNG IN DER KWP ORANIENBURG

04.11.2025 | Kristina Schumacher | Kommunale Wärmeplanung in Brandenburg

INHALT

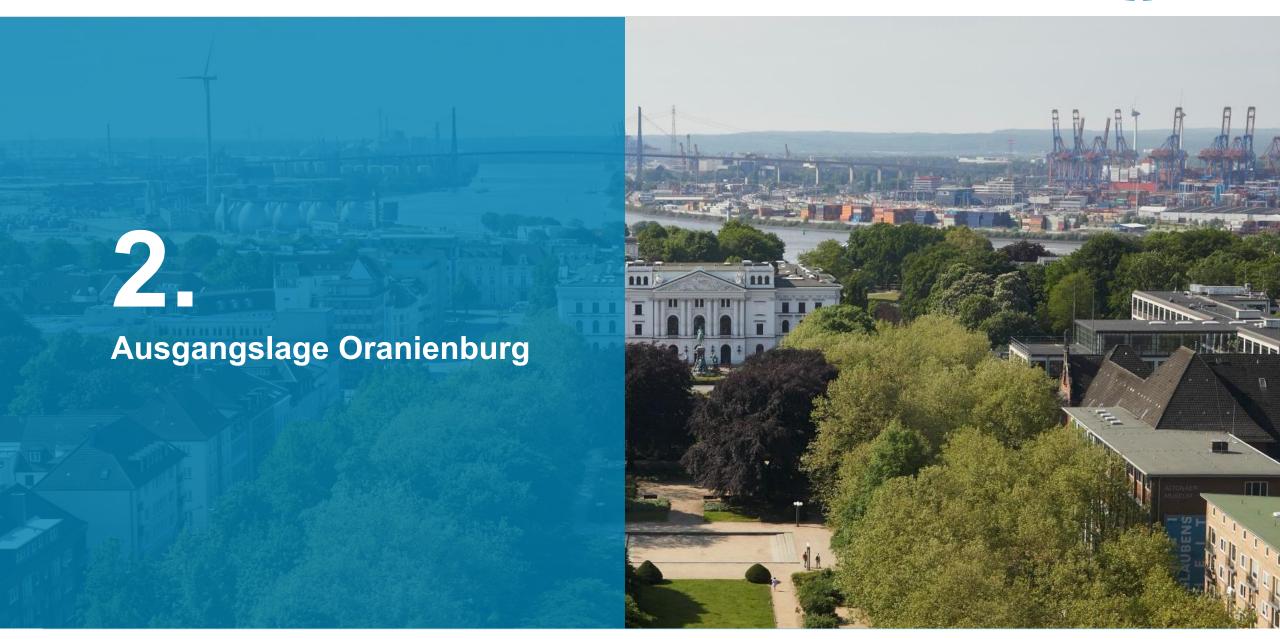
Murzvorstellung Hamburg Institut

Potenzialermittlung
Großwärmepumpen

02 Ausgangslage Oranienburg

Uberblick über andere erneuerbare Potenziale


03 Datenbedarf


ÜBER DAS HAMBURG INSTITUT

Wir bieten (Strategie-)Beratung, angewandte Forschung und Ingenieursplanung.

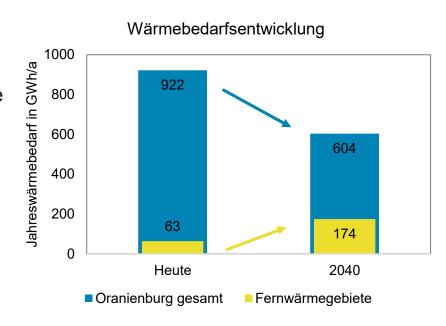
- Fokus: Energiepolitik und Energiewirtschaft
- 2012 gegründet
- Ca. 50 Mitarbeitende im interdisziplinären
 Team
- Inhaber- und mitarbeitendengeführt
- Standorte in Hamburg-Altona (Hauptsitz) und Berlin
- Kund:innen: Energiewirtschaft, Kommunen, Ministerien & Behörden, Unternehmen, Industrie & Gewerbe, Immobilienwirtschaft, Finanzwirtschaft, Verbände & Institute

ORGANISATORISCHES

Zeitplan der KWP Oranienburg

- Mai 2023: Kooperationsvertrag zwischen Stadt und Stadtwerken zur gemeinsamen Bearbeitung von KWP und Trafoplanung
- Q3 2023 Q2 2024: EU-weite Ausschreibung für Beratungsleistungen
- Mai 2024: Kick-Off der KWP-Bearbeitung
- Dezember 2024: Abschluss der KWP (8 Monate Bearbeitungszeit)

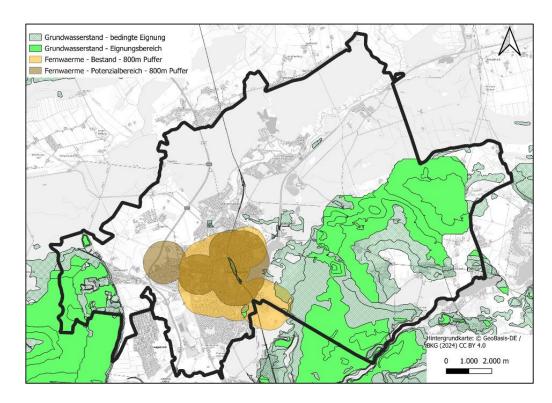
2024 2025 Mai Jun Jul Aug Sep Okt Nov Dez Jan 7 14.05.24 Auftakt Projektauftakt Phase 1 Bestandsanalyse FG Gebäude und Wärmeplanung hase 2 Potentialanalyse FG Großwärmepumpen FG Tiefengeothermie FG Tiefengeothermie FG Abwärme / Abkälte FG Abwärme / Abkälte FG Freiflächensolar FG Freiflächensolar FG Großwärmespeicher FG Großwärmespeicher FG Wärmenetze FG Wärmenetze / dezentrale Erz FG Energiesystemmodell FG Energiesystemmodell Phase 4 Wärmewendestrategie Transformationsplan Transformationsplan FG Finanzierung FG Finanzierung Anfang 2025 Akteursbeteiligung 02.07.24 Fachforum 10.10.24 Bürgerforum I Bürgerforum II Begleitende Kommunikation und Steuerung Sitzungen Kernteam (wöchentlich), Projektlenkungskreis/Kommunikationsteam (nach Bedarf Verwendungsnachweis und Beschlussfassung


Bearbeitungsstruktur

- Bürgermeister der Stadt und Geschäftsführung der SWO = Projektauftraggeber, Stadt = Planungsverantwortliche Stelle, SWO = Operative Projektleitung
- 10 ausgeschriebene Fachgutachten zzgl. Gesamtkoordination

AUSGANGSLAGE ORANIENBURG

- Klimaneutralität bis 2040
- Gesamtwärmebedarf sinkt, während der Fernwärmebedarf durch Ausbau und Verdichtung steigt
- Aktuell KWK-Anlagen basierend auf Erdgas und Erdöl, ca. 41 MW thermische Leistung → 2040: ca. 78 MW Spitzenlast
- Betrachtete klimaneutrale Wärmepotenziale:
 - Abwärme/ Abkälte
 - Tiefengeothermie
 - Freiflächensolar
 - Großwärmepumpen (Luft, Fluss, See, oberflächennahe Geothermie, Abwärme)
 - (Großwärmespeicher)


BENÖTIGTE DATEN SOLARTHERMIE/ GROßWÄRMESPEICHER

Flächeneignungsprüfung:

- Recherche von Ausschluss- und Abwägungsgebieten Öffentlich zugänglich:
 - Geoportal Brandenburg, z.B. zu Biotopen
 - Landesentwicklungsplan Planungsgemeinschaft Prignitz-Oberhavel,
 z.B. zu Freiraumverbund
 - Regionales Raumordnungsprogramm

Bereitgestellt:

- Stadtverwaltung: z.B. kommunale Flurstücke, Bauleitplan
- Stadtwerke: z.B. Netzgebiete
- LfU: z.B. Wassergewinnungsgebiete

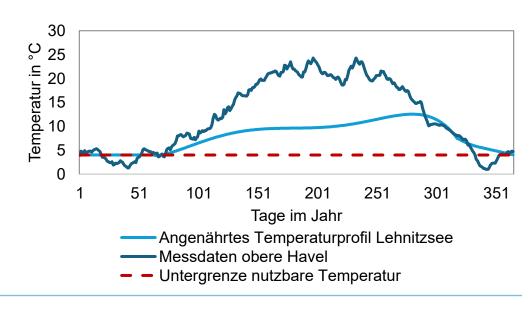
Beispiel: Grundwasserstände in Oranienburg, eigene Darstellung basierend auf LfU Brandenburg, 2024

DATENBEDARF UMWELTWÄRMEQUELLEN GROßWÄRMEPUMPEN

Oberflächennahe Geothermie:

Landesamt für Bergbau, Geologie und Rohstoffe Brandenburg: Ausschlussgebiete, mittlere Wärmeleitfähigkeit, max.
 Bohrtiefe (teilweise öffentlich, teilweise direkte Anfrage)

Oberflächengewässer:


- Landesamt für Umwelt, W12 Hydrologischer Landesdienst und W 14 Oberflächengewässergüte: Durchflüsse,
 Temperaturen, Messstellen (teilweise öffentlich, teilweise direkte Anfrage)
- Wasserstraßen- und Schifffahrtsamt oder-Havel: Temperaturdaten (teilweise öffentlich, teilweise direkte Anfrage)
- Teilweise unzureichende Datenverfügbarkeit → Interpolation nötig

Luft:

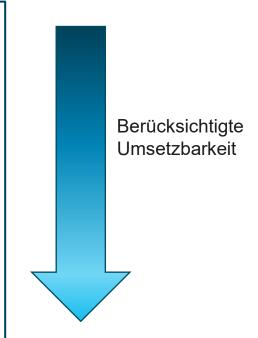
Deutscher Wetterdienst: Umgebungslufttemperaturen (öffentlich)

Abwasser:

- Koordination eigener Messungen in Abwasser-Kanälen
- Klärwerk-Betreiber: Durchfluss- und Temperaturmessungen

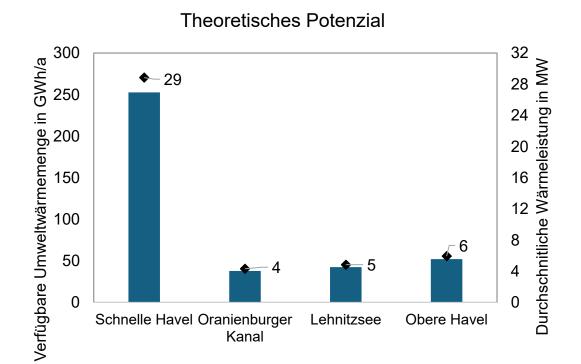
VERSCHIEDENE POTENZIALEBENEN – BEISPIEL GEWÄSSER-WÄRMEPUMPE

Theoretisches Potenzial

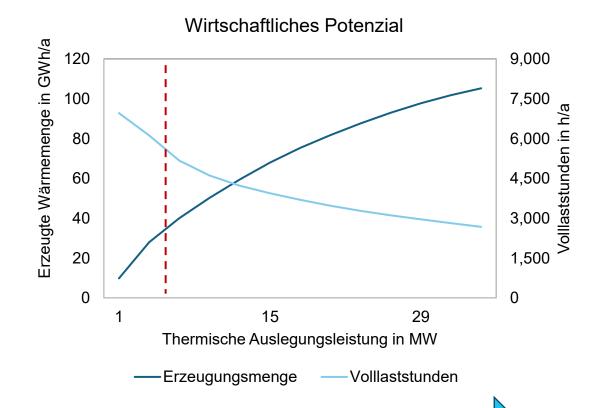

 Max. verfügbare Wärmemenge im gesamten Volumenstrom bei Auskühlung des gesamten Volumenstroms um 1 K

Technisches Potenzial

- Minimal nutzbare Grenztemperatur → begrenzte Einsatzzeit im Winter
- Begrenzter Entnahmevolumenstrom (ökologisches Gleichgewicht)


Wirtschaftliches Potenzial

- Begrenzte Auslegungsleistung der Wärmepumpe
- Begrenzte Wärmeabnahme durch Bedarf im FW-Netz
- Ziel bei Großwärmepumpen im Gewässer mind. 3.500
 Vollbenutzungsstunden und mind. 1 MW Leistung



POTENZIALE AM BEISPIEL DER GEWÄSSER-WÄRMEPUMPE

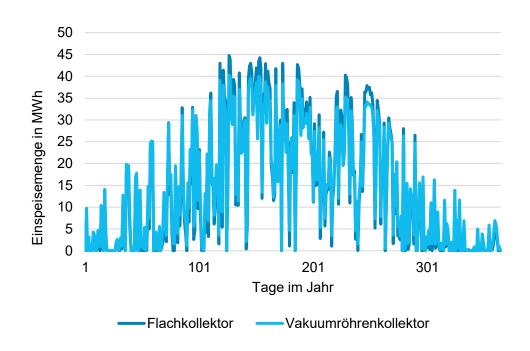
■ Verfügbare Umweltwärmemenge ◆ Durchschnittliche Wärmeleistung

- Theoretisches Potenzial in allen Gewässern
- Insgesamt 286 GWh/a theoretisch verfügbare Umweltwärme

- Oranienburger Kanal aufgrund des geringen Durchflusses ausgeschlossen
- Bei Auslegung auf je 4.000 Vbh insg. 124 GWh/a Hochtemperatur-Wärme nutzbar

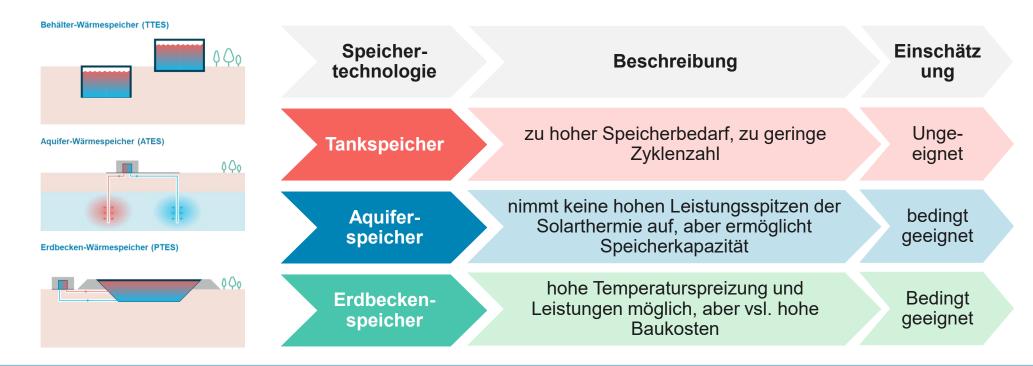
ZUSAMMENFASSUNG WIRTSCHAFTLICHE POTENZIALE FÜR GROßWÄRMEPUMPEN

	Abwasser- WP	Umgebungsluft -WP	Ob. Geothermie- WP	Fluss-WP	See-WP
Verlässlichkeit der Annahmen	Gering	Hoch	Mittel	Mittel	Gering
Flächeneffizienz	Hoch	Mittel	Niedrig	Hoch	Hoch
Weiternutzung Fläche	Nein	Nein	Ja	Nein	Nein
Verfügbarkeit	Ganzjährig	Ganzjährig	Stark begrenzt	Begrenzt	Ggf. begrenzt
Stromverbrauch	Niedrig	Hoch	Niedrig	Mittel	Mittel
Investitionskosten	Mittel	Gering - Mittel	Hoch	Mittel	Mittel
Max. Deckungsanteil	Bis zu 2%	Bis zu 90 %	Bis zu 100 % (mit Speicher)	Bis zu 43 %	Bis zu 26 %
Eignung	X		X		


ZUSAMMENFASSUNG ÜBRIGER POTENZIALE IN ORANIENBURG

	Abwärme	Solarthermie	Tiefe Geothermie + Wärmepumpe	Großwärme- speicher + Wärmepumpe
Verlässlichkeit der Annahmen	Gering	Hoch	Mittel	Mittel
Flächeneffizienz	Hoch	Niedrig	Hoch	Mittel
Weiternutzung Fläche	Nein	Teilweise	Ja	Nein
Verfügbarkeit	Begrenzt	Stark begrenzt	Ganzjährig	Begrenzt
Stromverbrauch	Niedrig	Niedrig	Mittel	Mittel
Investitionskosten	Gering	Gering	Hoch	Hoch
Max. Deckungsanteil	Sehr niedrig	Bis zu 15 % ohne Speicher	Bis zu 100 % (mit Speicher)	
Eignung	X			

FREIFLÄCHEN-SOLARTHERMIE


- Hoher Platzbedarf
- In Oranienburg ausreichend Flächen zur Verfügung → Kommunale Flächen jedoch nur in geringem Umfang
- Hohe Saisonalität → solarer Deckungsanteil nur bis max. 15 % ohne Großwärmespeicher möglich
- Größere Anlagengrößen führen zu deutlich niedrigeren Erzeugungskosten je MWh → Skalierungseffekt
- Gesteigerte Effizienz bei niedrigen VL-Temperaturen

GROßWÄRMESPEICHER

- Bedarf ergibt sich aus ganzheitlicher Simulation bzw. Optimierung von Erzeugerpark und Bedarf
- Sinnvoll, wenn große saisonale Überschusswärmemengen kostgünstig zur Verfügung stehen (z.B. industrielle Abwärme, Abwärme Müllheizkraftwerk oder Solarthermie)

FAZIT

Strategische Zusammenarbeit zwischen Stadt, Stadtwerken und Wohnungswirtschaft → besonders wertvoll in Bezug auf Flächensuche und -sicherung, Datenbereitstellung, Fernwärmenetzausbau und Effizienzmaßnahmen

Neben dem technischem, bereits früh auch das wirtschaftliche Potenzial je Quelle bestimmen und genehmigungsrechtliche, räumliche oder investive Begrenzungen berücksichtigen

Bei Zusammenstellung des erneuerbaren Erzeugerparks begrenzte

Verfügbarkeit, Saisonalität, Gleichzeitigkeit, Vollbenutzungsstunden je

Anlage berücksichtigen → für komplexe Systeme

Energiesystemoptimierung auch zur Speicherbedarfsermittlung

Up to date bleiben!

Abonnieren Sie gerne unseren Newsletter

www.hamburg-institut.com/ anmeldung-zum-newsletter