KLIMABÜNDNIS BRANDENBURG

KOMMUNALE WÄRMEPLANUNG OFENSTADT VELTEN

VORSTELLUNG DES UNTERNEHMENS ENERGIELENKER

ENERGIELENKER ALS STARKER PARTNER - VOM OBJEKT BIS ZUR KOMMUNE

LÄNDER & KOMMUNEN

QUARTIERE & WOHNGEBIETE

- Strategieberatung
- Portfolio-Betrachtung
- ► Fördermittelakquise
- Konzepterstellung
- ▶ Klimaschutz- und Klimaanpassung
- ▶ Kommunale Wärmeplanung
- ▶ PV-Potentialanalysen

- Bestandsbewertung
- Ausbau Erneuerbarer Energien
- Sanierungsmanagement
- Ausbau Nah- und Fernwärme
- Mobilitätsbetrachtung

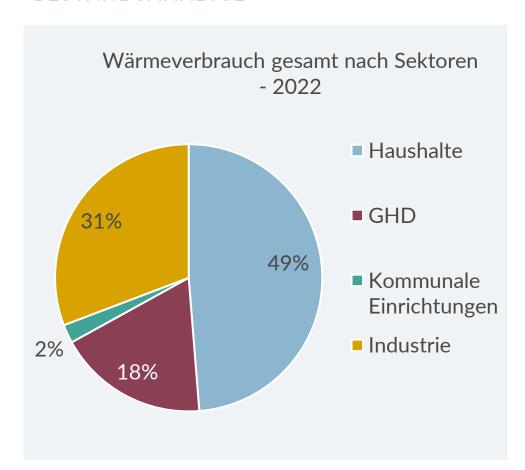
OBJEKTE

- ▶ Energieversorgungskonzept
- Machbarkeitsstudien
- Generalplanung
- Architektur, TGA-Planung
- ▶ E-Mobilität & PV
- Energiemanagement

ERGEBNISSE

BESTANDSANALYSE

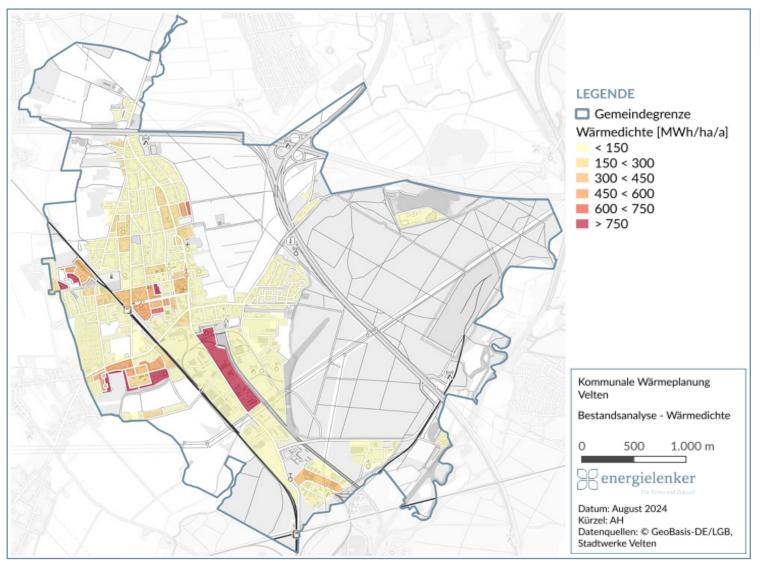
IN ZAHLEN


- Wärmeverbrauch Stadt Velten insgesamt rund 91 GWh
- Erdgas ist mit 41% Anteil der überwiegende Energieträger.

Fernwärme hat einen Anteil von 29%.

ERGEBNISSE

BESTANDSANALYSE



IN ZAHLEN

- Wärmeverbrauch Stadt Velten insgesamt rund 91 GWh
- Die Haushalte haben mit 49% den größten Anteil.
- Es folgen die Industrie mit 31% und Gewerbe, Handel, Dienstleistungen (GHD) mit 18%.
- Der Wärmeverbrauch Industrie enthält einen Großteil Prozesswärme (rund 36 GWh). Prozesswärme wird ausschließlich über Erdgas bereitgestellt.

ERGEBNISSE

BESTANDSANALYSE - WÄRMEDICHTE

WOFÜR IST DIE WÄRMEDICHTE WICHTIG?

- Beschreibung der räumlichen Verteilung der Wärmebedarfe im Stadtgebiet auf Baublockebene.
- Ein Baublock umfasst mindestens 5 und maximal 50 Adressen.
- Abbildung der Schwerpunkte im Wärmebedarf
- Niedriger Wärmebedarf im Wohngebiet
- ▶ Hoher Wärmebedarf im Industriegebiet
- Im Industriegebiet ist der Gasbedarf im Wesentlichen für die Produktion, nicht für die Wärmeversorgung
- Identifikation von potenziellen Eignungsgebieten für den Ausbau von Fernwärmenetzen bzw. leitungsgebundenen Versorgungen

WÄRMEBEDARFSENTWICKLUNG UND POTENZIALE

ÜBERSICHT POTENZIALANALYSEN Wärmeerzeugung Einsparungen durch Direkte Wärmeerzeugung Strom zur Wärmeerzeugung Solar-Wind Ab-Wasser PV Geo-Bio-Sanierung thermie wärme thermie masse Effizienz Suffizienz

ERMITTLUNG WÄRMEBEDARFSENTWICKLUNG

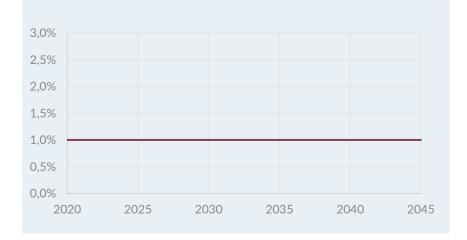
METHODIK EINSPARUNG DURCH SANIERUNG

- Berechnung gebäudescharf
- Modell mit Informationen zu Gebäuden
 - Wärmebedarf & Altersklasse
- ▶ Klassifizierung Sanierungsfähigkeit
 - Schwellwert & Ausschlusskriterien
- Sortierung der Gebäude nach worst-first Ansatz
- Auswahl anhand der Sanierungsrate
- ▶ Zuweisung eines neuen Wärmebedarfes anhand des KWW Technikkataloges
- nur Betrachtung Vollsanierung

Bild KI-generiert

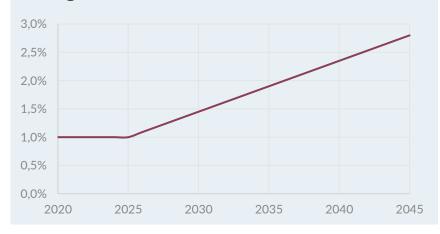
Ist-Zustand

sanierungsfähig? Auswahl Gebäude Zuweisung Energiebedarf

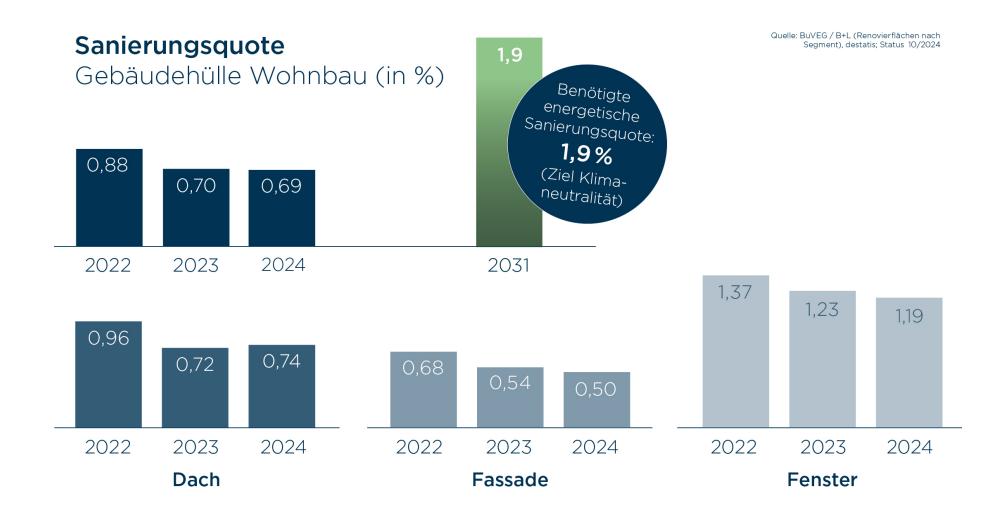

basierend auf Verbrauchswerten Wärmebedarf übersteigt Schwellwert

ERMITTLUNG WÄRMEBEDARFSENTWICKLUNG

ERMITTLUNG SANIERUNGSRATE


REFERENZSZENARIO

- gleichbleibende Sanierungsrate
- Annahme 1 % pro Jahr
- insgesamt 20 % der Gebäude ab 2026



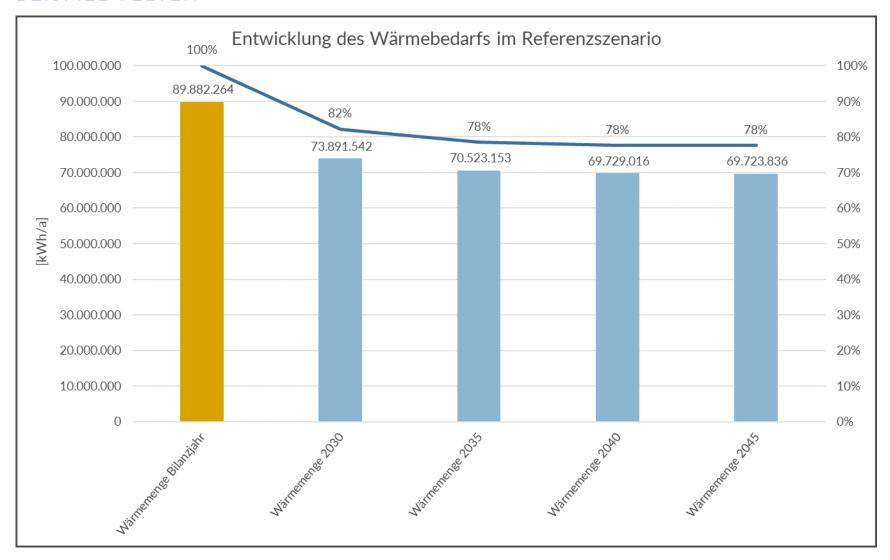
KLIMASCHUTZSZENARIO

- ansteigende Sanierungsrate
- Ausgangspunkt 1 % pro Jahr
- ▶ Zielwert 2,8 % pro Jahr
- insgesamt 38,9 % der Gebäude ab 2026

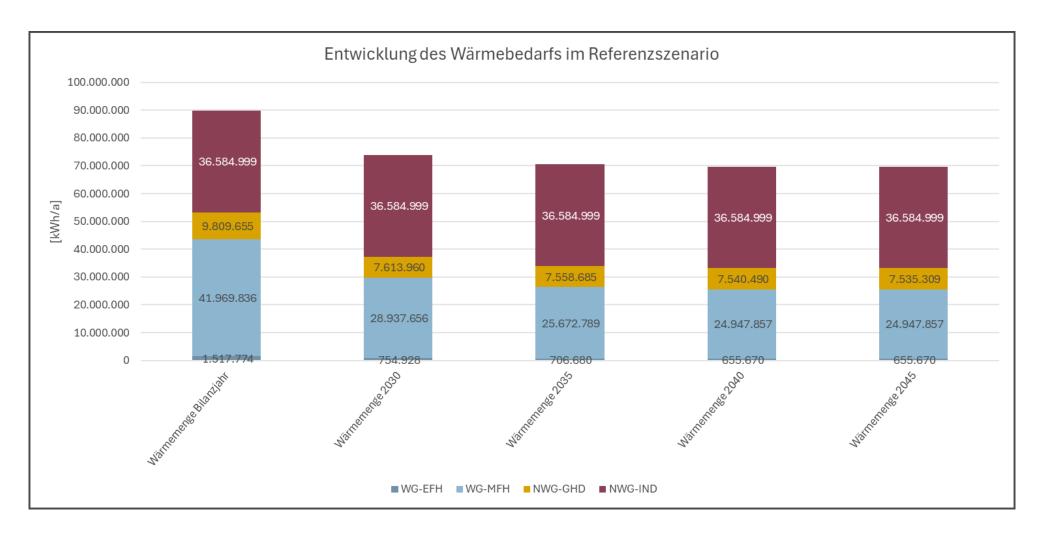
SANIERUNGSRATEN IN DEUTSCHLAND

SANIERUNGSZIELE

	WG-EFH						
	Baualtersklasse		Status Quo	Status Quo Einsparungen		Reduktion bis 2045 auf	
	bis 1918	niedrig	kWh/m²*a	113	33	71%	80
T45: RedEff-	1919-1948	niedrig	kWh/m²*a	103	48	53%	55
Szenario	1949-1978	niedrig	kWh/m²*a	93	28	70%	65
(niedrig)	1979-1994	niedrig	kWh/m²*a	87	38	56%	49
(3,	1995-2011	niedrig	kWh/m²*a	62	5	92%	57
	2012-2020	niedrig	kWh/m²*a	48	0	100%	48
	2021-2035	niedrig	kWh/m²*a	39	0	100%	39


T45:
Strom-
Szenario
(hoch)

	Baualtersklasse			Status Quo	Finanawungan	Reduktion bis 2045	Reduktion bis 2045
					Einsparungen	auf	auf
	bis 191 8	hoch	kWh/m ² *a	113	52	54%	61
	1919-1948	hoch	kWh/m ² *a	103	55	47%	48
	1949-1978	hoch	kWh/m ² *a	93	41	56%	52
)	1979-1994	hoch	kWh/m ² *a	87	38	56%	49
	1995-2011	hoch	kWh/m ² *a	62	23	63%	39
	2012-2020	hoch	kWh/m ² *a	48	0	100%	48
	2021-2035	hoch	kWh/m²*a	39	0	100%	39


NEUBAUGEBIETE

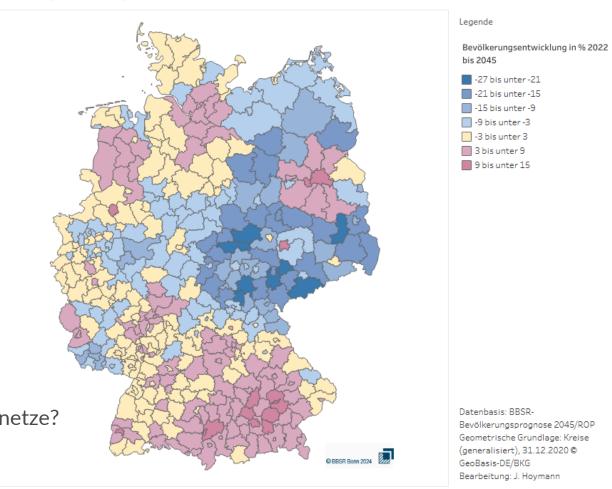
Adresse	Wohneinheiten/Einwohner	Wärmebedarf	
Neubaugebiet 1	790 Einwohner	1,45 GWh	
Neubaugebiet 2	40 Wohneinheiten	0,44 GWh	
Neubaugebiet 3	30 Wohneinheiten	0,11 GWh	
Neubaugebiet 4	38 Wohneinheiten	0,14 GWh	
Neubaugebiet 5	57 Ferienhäuser	0,21 GWh	
Gewerbegebiet		Keine Aussagen	
Neubaugebiet 6	50 Wohneinheiten	0,18 GWh	
	215 Wohneinheiten + 790 EW	2,53 GWh also 2,8 % Zuwachs	

BEISPIEL VELTEN

NACH GEBÄUDETYPEN

WÄRMEDICHTE

WÄRMEDICHTE VOR UND NACH SANIERUNG


SANIERUNG ODER LEERSTAND

BESONDERE HERAUSFORDERUNG IN SCHRUMPFENDEN REGIONEN

Bevölkerungsentwicklung in %

- Leerstand und Rückbau verringern den Wärmebedarf
- Anzahl der Unternehmen verringert sich
- Änderungen von Gebäudenutzungen
- Wohnfläche pro Kopf steigt an
- energetische Sanierungen werden unwahrscheinlich

- Anpassung Infrastruktur notwendig
- langfristige Wirtschaftlichkeit der Wärmenetze?

ERMITTLUNG WÄRMEBEDARFSENTWICKLUNG

ERGÄNZUNG EINSPARUNG DURCH LEERSTAND

- ▶ Zuordnung zu Leerstand schließt Sanierung aus
- kleinräumige Bevölkerungsprognose notwendig
- ideal: Leerstandserhebung in der Kommune
- hohe Unsicherheit bleibt.

Bild KI-generiert

Ist-Zustand

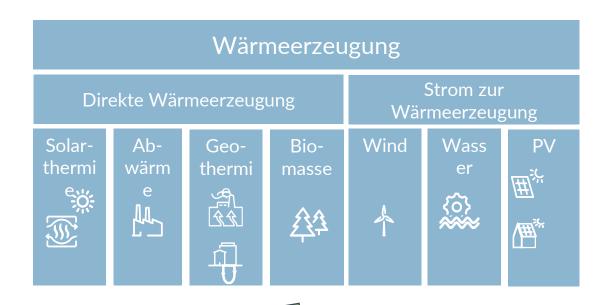
sanierungs-__ fähig? zukünftig Leerstand? Auswahl Gebäude Zuweisung Energiebedarf

basierend auf Verbrauchswerten Wärmebedarf übersteigt Schwellwert Leerstandsinformationen für Gebiet liegen vor

WÄRMEBEDARFSENTWICKLUNG UND WÄRMEBEREITSTELLUNG

BLICK AUF DIE GESAMTKOMMUNE

Einsparungen durch


Sanierung

Effizienz

Suffizienz

Optimum zwischen Kosten Einsparmaßnahmen und Wärmeerzeugung auf kommunaler Ebene gesucht

KONTAKTIEREN SIE UNS!

